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X-Ray Diffraction by Random Layers: Ideal Line Profiles and Determination of 
Structure Amplitudes from Observed Line Profiles 

BY A. J. C. WILSON 

Viriamu Jones Laboratory, University College, Cardiff, Wales 

(Received 4 February 1949) 

Warren's calculation of the line profile for diffraction from random layers depends on the use of an 
approximation function. This can be. avoided, and expressions found for (a) the ideal line profile for 
slow variation of the structure amplitude, and (b) the variation of the intensity of diffraction as a 
function of position along the ' rod '  of high intensity in reciprocal space, in terms of the layer shape 
and the observed line profile. 

The ideal line profile is, within a trigonometrical factor, 

/° I(cr)--FF*S0½ A(t) ]tl-½ (COS 27rvrt +sin 2n~ Itl) dt, 
- - 0 0  

where So( - 2 sin 00/A ) is the perpendicular distance from the origin of the reciprocal lattice to the 
centre line of the 'rod',  ~=  (sin 2 0 - s i n  2 00)/A sin 60, F is the structure amplitude, and A(t) is the 
area common to a layer and its 'ghost '  shifted a distance t parallel to S 0. This expression, evaluated 
for various layer shapes, gives intensities of diffraction slightly lower than those found by Warren 
and depending somewhat on the layer shape. In particular, the intensity for large negative volumes 
of ~ is proportional to [ cr I -~ multiplied by the maximum breadth of the layer. 

I fw is measured along the ' rod '  from the foot ofS 0, F(w) F*(w) -t-E(-w) F*(--w) can be obtained 
by 'unfolding' the observed I(~) by means of a double Fourier transformation. Diffraction by 
random layers can thus give more information than diffraction by a perfect crystal, as the latter 
gives FF*  only for integral values of the indices. 

1. Introduction 

Some substances, such as montmorillonite and some 
varieties of graphite, appear to possess a layer structure 
in which the layers, although in themselves compara- 
tively perfect and preserving a fairly definite inter-layer 
spacing, are displaced by random amounts. There is thus 
no true crystal lattice, and the X-ray diffraction maxima 
are of two kinds: 00l, resulting from the inter-layer 
spacing, and h/c-, resulting from the comparatively 
perfect layers. In the reciprocal-lattice representation 
there are points on the c* axis, more or less diffuse 
depending on the size and number of the layers, and 
rods, more or less diffuse depending on the size of the 
layers, passing through the points (ha*,/cb*, 0) parallel 
to c*. I f  the displacements of the layers are entirely 
random, there will be no concentrations of intensity in 
these rods corresponding to the h/cl diffraction maxima, 
the only variation of intensity along them being that  
due to the variation of the structure ampli tude of a 
single layer. The 001 points will give spots on rotation 
photographs or lines on powder photographs, broadened 
as usual for small particle size if the number of layers is 
not large. The rods, on the other hand, will produce 
peculiar streaks, with a steep rise in intensity at the 
low-angle end (the '  head '), and a slower decrease toward 
higher angles (the ' tai l ' ) .  The rods would be of infini- 
testimal thickness, and the rise in intensity would be 
discontinuous if the layers were large, but  in general 
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the layers are small, the rods have an appreciable 
thickness, and the sharpness of the head is reduced. In 
chrysotfle and perhaps some other layer silicates the 
layers have a finite number (three or six) of possible 
translations, which occur fflore or less at  random. For 
these substances the sequence of the layers is effectively 
random for some diffraction maxima, but  for others, 
for which the possible translations introduce phase 
changes tha t  are multiples of 2n, the layers are effec- 
tively in their proper sequence, and the corresponding 
regions of high intensity in the reciprocal lattice are no 
more diffuse than 001. There are thus fairly sharp spots 
for some values of h and/c and only streaks for others. 

Warren (19.41) has calculated the variation of 
intensity along such streaks, making the approximation 
tha t  the intensity variation across the rod in reciprocal 
space is exp (-rrp2Le), where p is the distance from the 
centre of the rod and L is the effective particle dimen- 
sion of the layers, assumed to be parallelograms. I t  has, 
however, been found, for example by Patterson (1939), 
tha t  this approximation function is unsatisfactory in 
the related problem of particle-size broadening, and it 
is therefore of interest to investigate the variation of 
intensity by a method not involving the use of approxi- 
mation functions. Such methods have been used for 
particle-size broadening by Patterson (1939), Waller 
(1939), Stokes & Wilson (1942, 1944), and Bouman & 
de Wolff (1942). The essential problem (Fig. 1) is to 
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determine the intensity tha t  in the reciprocal-space 
representation lies between spheres of radii S and S + dS, 
where 2 =  2 sin 0/h. In discussions of particle-size 
broadening it suffices to replace these spheres by planes 
tangent to them and perpendicular to the line joining 
the point hkl to the origin of the reciprocal lattice 
(Fig. 1 (a)), but this approximation is clearly useless in 
the present problem, and tangent paraboloids are the 
simplest plausible substitutes for the spheres. For 
S <  1-2S 0 Warren used paraboloids tangent to the 
spheres and having the same radius of curvature at  
the p~)int where the spheres are intersected by a line 
drawn from the origin of the reciprocal lattice per- 
pendicular to the rod in question (Fig. 1 (b)). For larger 
values of S, when there is an appreciable separation 
between the spheres and paraboloids in the region Q 
where the intensity in reciprocal space is greatest, he 
used two pairs of tangent planes. The necessity for 
using two different approximations is, however, avoided 
by taking the paraboloids tangent to the spheres at Q 
(Fig. 1 (c)). The paraboloids and spheres are then always 
in coincidence in the important region of high intensity. 
For small values of S - S  o there is no appreciable 
difference between the two sets of approximating 
paraboloids. 

° I ° 
(a) ( b )  

oV 

Fig. 1. Spheres in reciprocal space approximated by (a) ~angen~ 
planes (small crystals), (b) and (c) parabolic cylinders (ran- 
dom layers). 

The present more exact investigation leads to two 
main results. First, ff the variations of the structure 
amplitude with position in reciprocal space is slow (as it 
would be with graphite), the line profile can be expressed 
as an integral involving the shape, as well as the size, 
of the layers, and this integral can be evaluated for 
various simple layer shapes. For square, triangular and 
circular layers the intensity of diffraction is a little less 
than tha t  found by Warren, and the line profile depends 
to some ex"tent on the shape of-the layer. In  Fig. 3 the 
line profiles for square layers 'side-on' and 'corner-on' 
are shown as a function of (r= (S ~-  So)/2So, with the 
profile found by Warren given also for comparison. 
Other shapes show variations of the same order of 
magnitude. As already known, the intensity for large 
positive values of ¢ is proportional to the area of the 
layers divided by 0½; a new result is tha t  for large 
negative values of ~ the intensity is proportional to 
the maximum breadth of the layers divided by 4~r~. 
Secondly, ff the variation of the structure amplitude 

with position in reciprocal space is large, it is possible 
by an 'unfolding' process (Stokes, 1948) to obtain the 
variation of F(w) F*(w) Jr F ( - w )  F * ( - w )  as a function 
of w, where w is measured along the rod of high intensity 
from the end of So. 

2. General calculation 

The intensity of the X-rays diffracted from a crystal is 
proportional to 

I(H)=Z~Z~,F~F~,exp(27ri(r~.-r~) .H), (1) 

where H is the position vector in reciprocal space and 
F~ and rs are the structure amplitude and position 
vector of the j t h  unit cell. (See, for example, Wilson 
(1942), where, however, s/A is written instead of H.) 
If  the phase relation between successive layers is 
entirely random the intensity (except for 001) will be 
simply N times that  of a single layer, where N is the 
number of layers, and (1) becomes 

I(H) = 1VFF* Z~ 2: 5, exp (2~i(r~, - r~). H), (2) 

where r~ is now the position vector within a layer and 
the summation is over the cells of a single layer. Since 
the layers are supposed perfect Fj  and F~, are the same, 
and can be taken outside the sum. This will have a 
greatest value when (r~,- r~). H is integral, tha t  is, when 

H = ha* + kb* + lc*, (3) 

where h and k are integers and 1 is arbitrary. This 
equation determines a line in reciprocal space, and it 
convenient to express H and r in terms of a set of 
rectangular axes related to this line as follows. The 
X axis is taken parallel to So, the perpendicular from 
the origin of the reciprocal lattice on to the line, the Z 
axis is taken parallel to the line, and the Y axis is taken 
perpendicular to X and Z. Let 

H =  S0+0 ,  (4) 
and let x, y, z and u, v, w be the components of r and ta 
in the directions just defined. (The value of z is, of 
course, zero in the application to random layers.) In  
(2) r~. S O (=h jl  + k  j2 ) is an integer, and may thus be 
dropped in the exponentials, and for the small values 
of u and v that  are of importance r~.p (=x~uA-y~v) 
changes only slightly in going from one unit cell to the 
next, so that  the summations may be replaced by 
integrations over' the area of the layer. Then 

I(u,v,w)=NFF*c'C-lf ,f  
× exp {21ri[(x'-- x) u-i- (y'-- y) v]} dA dA', (5) 

where C = I a × b I is the area of the face of the unit cell 
containing a and b, and c' = a × b .  c/C is the inter-layer 
spacing. I t  depends on w only through FF*. Except  
for certain constants and  geometrical factors, the 
intensity of the diffracted X-rays as a function of S is 
got by integrating I(u, v, w) over the space between 
spheres of radii S and S A- dS, but, as already discussed, 
these may be replaced by tangent paraboloids. In  the 
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region where the intensity is large u, v~0 ,  and the 
equation of the paraboloid making the closest contact 
with the sphere 

S ~ = H.  H = S~ + 2uS o + u ~ + v ~ + w ~ (6) 

is S ~ = S~ + 2uS o + w ~. (7) 

Let o-= (S ~ -  S~)/2S o. The intensity of reflexion as a 

By the reciprocal relation between such transforms, 
therefore, 

L(t) = I(o') exp { - 2nio't} do'. (I3) 
- - 0 0  

If  I(o-) is determined experimentally, L(t) can be found 
by numerical integration or otherwise. The aim of 
structure analysisis to find co-ordinates x, y, z for every 

func t ionofo ' i sg ivenby the in tegra lo f I (u ,v ,w)dudvdw atom in the unit cell. I f  the scattering factor for the 
over the space between the spheres, or, since the volume j t h  atom is fj, then 
element dudvdw corresponds to do'dvdw (Jacobian of 
the transformation unity), by 

f I(o') do" = Nc' C -1 FF*  exp {2ni[ (x' - x) o- 
, )  - oo  j - ¢o  J A "  d A  

+ (y'-y) v -  (x'-x) w~/2~o]}do-dAdA'dvdw. (8) 
The integral with respect to v is singular, being zero 
unless y '= y, when it is infinite in such a way tha t  the 
double integral over y'  and v is unity. Equation (8) 
therefore becomes 

I(o-) = Nc'C -1 FF*  exp {2ni[(x' - x) o- 
j - -  oo ' A 

- ( x ' - x )w2 /2So]}dAdx 'dw ,  (9) 

with the substitutions x ' - x = t  and A ( t ) = I I d x d y  o r ,  

over the area common to the crystal and its 'ghost '  
shifted a distance t parallel to S 0, 

I (o - )  = Nc'C -1 FF*  t) 
j - - c o  - - ~  

× exp {2hi[o-t- wgt/2So]} dwdt. (10) 

From this equation two lines of investigation are open. 
First, one can regard I(o-) as an experimentally deter- 
mined function, and seek to derive from it the variation 
of FF* with w in order to gain clues to the crystal 
structure, or, secondly, one can investigate the varia- 
tion of I(o-) with layer shape, regarding FF*  as a con- 
stant  or a slowly varying function for the variation of 
which a correction can be applied. In the latter case the 
integration with respect to w is of the Fresnel type, 
giving 

I(o')=NFF*c'O-~(½So)i A(t)lt]-~ 
. J - - c o  

×{cos2no't+sin2no-Itl}dt. (11) 

The following section gives a few suggestions with 
regard to the former problem; the latter, the main 
subject of this paper, is resumed in § 4. 

3. Relation between I(o-) and the crystal structure 

By (10), I(o-) is the Fourier transform of the function 
L(t) given by 

~ { 2niw2t~-~o , L( t )=Nc'C-iA(t)  F F *  exp ~dw. (12) 
.J--c0 

F = Eff~ exp {2ni[hx~/a + ky~/b + (w-t- wo) zj]}, (14) 

where - w  0 is the projection of h a * + k b *  on c*. Sub- 
stitution in (12) gives 

L(t) = Nc' C-1A(t) Ej E~.,fffj, exp {2ni[(xj- xr) h/a 

+ (Y~- Yr) k/b + ( z j -  zr) w0] } 

× 2hi (z~-z~,)w 2So j ]dw  

= Nc'C-I(So/2t)½ A (t) Ej Erf f fr  exp {2ni[(xj-  xr) h/a 

Zr (y~-yr )k /b+(z j - z r )wo+(Zj -Zr)  2 So/2t]}. (15i 

By trial and error or other accepted means of crystal- 
structure analysis it sh6uld be possible to find values  
of xj, yj, z~ satisfying this equation. In principle the 
values of z~ should be determinable from the 00l 
maxima only, so that  only. the values of x 5 and y~ need 
be found by a consideration of the tailed reflexions. 

Equation (12) may, however, be approached in a 
different way. Let 

G ( w ) = F ( w ) F * ( w ) + F ( - w ) F * ( - w ) ,  (16) 

and let K(t), J(t) be the real and imaginary parts of 
CL(t)/c'NA(t), that  is 

CL(t)/c'NA(t) = K(t) + iJ  (t). (17) 

Then K(t) = I ~ 27rw2t ] G(w) cos-5~-0 dw, ~ 
J 0  

=_ f.oD 27rw2t ! (18) 
and J(t) Jo G(w) sin- o dW. J 

On making the substitution ~k = w~/2So these become 

K(t)=(½So)½ f / ~-~ G{(2So~)~}cos(2nt~)d~, (19) 

fo o J(t)=(½So)~ ~k-~ G{(2So~)i}sin(2nt~)d¢', (20) 

that  is, K(t) and J(t) are respectively the cosine and 
sine transforms of (S0/2~)i G{(2S0~.)i }. Inverting these 
transforms gives 

G{(2So~k)~}=jo "~g(t)cos(2nt~) dt, (21) (So/2~)~ 

G{(2S0~)~}=f/J(t)sin(2nt~k)dt,  (22) (So/2~)t 

I5-2 
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which become, on replacing ~k by  w~/2So, 

w f ~  27rtw ~ 
G(w)=So o K ( t ) c ° s - ~ o d t '  (23) 

w [" ~ 2ntw ~ 
= J J(t)sin-2-~odt. (24) O(w) ~ o 

I t  should therefore be possible to determine 

G(w) = F(w) F*(w) + F ( - w )  F*(--w) 
by applying two straightforward,  though somewhat  
tedious, t ransformations to the observed variat ion of 
I(q) with ¢; a Fourier t ransformat ion to I(~), giving 
L(t), and a cosine or sine t ransformat ion to the real or 
imaginary  par t  of L(t)/A~t). I t  is t rue tha t  A(t) requires 
a knowledge of the layer shape, but  it  would probably  
be sufficient to approximate  this either by  a circle or 
by  a rectangle. 

4. Compar ison  with particle-size broadening 
Equat ion  (11) is analogous to the expression for the 
line profile of a normal hlcl diffraction max imum from 
a small crystal:  

I(s) = F F *  U -1 V(t) cos (2nst) dt, (25) 
. - - ¢ 0  

• where s = S - S 0, U is the voltage of a unit  cell, and V(t) 
is the  voiume common to the crystal  and its ' ghos t '  
shifted a distance t toward the origin of the reciprocal 
latt ice (Stokes & Wilson, 1942; Wilson, 1949, p. 41). 
The apparent  particle size (Jones, 1938) for the normal  
max imum is easily obtained in the form 

= V-~tV(t ) dt, (26) 8 

but  no corresponding expression can b e  obtained from 

since (i) t i ( ¢ ) d ~  does not  converge, and (ii) the  (11) 

position and height of the max imum of I(~) cannot be 
expressed in simple form. The nearest  analogue is 
perhaps the  ratio of the slope aI/ao" to the actual  value 
of I(~) for ¢ = 0: 

f I j; e' = 27r A(t) ltl~dt A(t) lt[-~dt. (27) 

This m a y  be evaluated for various simple shapes, b u t  
it  i s  unlikely to be of practical importance since the 
effect of experimental  imperfection on ~I/ao" may  be 
large and the position on the film corresponding to 
( r = 0  difficult to locate with certainty.  For  a square 
with sides of length 19 making angles with S o whose 
cosines are m i> n it becomes 

e" = 2np(7m - 3n)/7m(5m - n). (28) 

The value of this does not  va ry  great ly with m, giving 
always e' -~ 1.26p. (29) 

For  a' circle of diameter  D (27) gives (eft (73) and (76)) 

, fr( ) T 
e = - i T  kr-~z)J - 1.09D. (30) 

The numerical  coefficient was wrongly given as ~o 
instead of i s  in a prel iminary account of this work 
(Wilson, 1948). I f  the ' t rue  particle size' p is defined 
as the square root of the area of the layer, (30) becomes 

e ' -  1.24p, " (31) 

which is practically the same as tha t  for a square of 
the same area. 

5. Exact and series expressions for I(~) 

The integral in (11) extends from - m  to + ~ ,  bu t  this 
is more or less symbolical, as in real i ty  A (t) vanishes a t  
some finite value r of t, and is zero for all larger values. 
Since A (t) = A ( - t) the equation m a y  be wri t ten 

I(o') = N F F * d C - I ( 2 S o ) t  A(0 t-~(cos 2no~ 
0 

+ sin 2rro~) dt. (32) 

For  ¢ large only small values of t contribute appreciably 
to the integral, so tha t  its asymptot ic  values are 
obtained on replacing r by ¢c and A (t) by its value for 
small t, p2_ bt, where p is the ' t r u e '  particle size and 
b is the max imum breadth  of the layer, measured per- 
pendicular to S 0. The integrals in (32) are then known, 

glvmg I(o') ,.~ NFF*c'  C-lp2(2So/o')½ | 
for ¢ large and positive, and [ (33) 

-I(o') ,.~ NFF*c'  C-1b(So/27r [ff [a)½ J 

for ~ large and negative. 
In  order to obtain a function suitable for calculation 

it is convenient to make certain changes in the variables. 
Let ~=2no't, x=2no'r, and replace the area function 
A(t) by  p~a(~), where p is the  ' t r u e '  particle size. The  
function a(~) has the properties a ( 0 ) = l ,  a (x )=0 .  
Equat ion  (32) becomes 

I(o')-NFF*c'C71(2So)~p=r½K(x), } 

where K(x)=x-½f~a(g)g-½(cosg@sing)dg. (34) 

The variables on the r ight  are always to be taken  as 
positive; if, in fact, q, and consequently ~ and x, is 
negative, only the encircled sign is to be changed. This 
function K(x) is suitable for calculation. I t  differs 
t r ivial ly  from Warren 's  function $'(a) in t ha t  it  is 
larger by  a constant  factor 2 n - t - 1 - 5 ,  and t h a t  
x -  2n½a,~ but  the approximat ion used by Warren leads  
to essential differences as well. For  theoretical discus- 
sion the function 

K(x) + iK( - x) 
M(x) = 

1 + i  
_ x - ½ f  x 

1 + i d0 a(~) ~-½{(1 + i) cos ~ + (1 - i) sin ~} d~. 

joXa(~) ~-~ exp (-- i~)d~ (35) 

t More strictly xs/o'=2n½a, but the relation in the ¢~xt 
extends to Warren's ftmction the benefit of the better-fitting 
paxaboloids. 
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is easier to manipulate;  K(x) is the  real par t  of (1 4- i) M(x) 
and K ( -  x) is its imaginary part .  

In  any  practical  case a(~) can be expressed as a 
Taylor ' s  series valid over the range 0 to x, or as a finite 
number  of series valid over subranges. The discussion 
may  be l imited to cases for which a(~) is represented by  
a single series; no difficulty in principle, arises in apply- 
ing it  to part icular  cases involving more than  one series. 
For several simple layer shapes (triangle, parallelo- 
gram, hexagon 's ide-on')  a(~) is simply a quadrat ic  

in ~: a(~)-- 1-- (1 4-~])~/x4-y~2/x ~, (36) 

• where ~] is a parameter  between 0 and 1 depending on 
the shape and orientat ion of the layer. In  general it 
m a y  be expressed 

a(~) = a +a'~/x +a"~9/x 2 +a"~3/x 3 + ..., (37) 

where a, a ' ,  a", ... are constants.  Let  

M~(x)=x-~ f ~ a ( ~ ) ~ - t e x p ( - i y ~ ) d ~ ,  (38) 

where u l t imate ly  y will be put  equal to unity,  so t h a t  
the  function reduces to M(x). Insert ing a(~) from (37) 
gives 

M~,(x)--x-~ {a+a '~ /x+a"~/x~+. . . }~-~ .exp( - i y~)d~  

= ( a 4 - i a ' ~ x y ) ÷ ' ~ "  0_~__ ~ _ (xy)-~ 
a ~(xy)~± ...1 

x (yg)-~ exp ( - iyg) g(yg), 

s o  t ha t  

M(x) = a ÷ ia -~ + i~a " ~ 4-... x-~ g-~ exp ( - ig) dg. 

(39/ 

The factors in brackets m a y  be wri t ten  symbolically 
as a(ixd/dx), so t ha t  

M ( x ) = a ( i x d ) x - ~  f ~ - ~ e x p ( - i ~ ) d ~ ,  (40) 

where x-n(xd/dx) n is to be interpreted as dn/dx n. The 
integral  in (40) is (2u)~{C(x)-iS(x)},  where C(x) and 
S(x) are the Fresnel integrals in the form t reated (p. 545) 
and tabula ted  (pp. 744-5) by  Watson (1922). The line 
profile is therefore determined explicitly in terms of 
known functions by  the equation 

M(x)=(2n ) ia ( i xd /dx )x - i {C(x ) - i S ( x ) } .  (41) 

In  the special cases for which a(~) is a quadrat ic  
(_$~ Y 

a(~) = a 4- x ~+  a~x~ o (42) 

and a(~)= 1 - ( 1  4- ~1-----~) ~ 4 - ~ e ;  (43) 
X 

this gives K(x) = al~o(x ) + a'k~(x) + a"k,,(x) , (44) 

and K(x) = gl(x) 4- ~?g~(x), (45) 
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where 

]c0(x ) = (2n/x)~ ( C ( x ) •  S(x)}, (46) 

~l(X) = (-/2x3) ~ { ® C(x)- S(x)} 

4- x-l{ 0 cos x 4- sin x}, (47) 

k~(x)=~ ~ { - c ( x ) O S ( x ) }  

4- x-l{ @eosx 4- sin x} 4--~x-~{cosxGsinx}, (48) 

gl(X) = ko(X)- k~(x), (49) 
g~( x) = k2(x) - kl (X). (50) 

The relations between the functions 

k l ( - x ) =  ~ko(x)/~x , (51) 

k ~ ( - x ) =  ~kl(X)/~x, (52) 

g2( - x) = - Dg~ (x) /Dx, (531 

are easily obtained. Subst i tut ion of the asymptot ic  
series for C(x) and S(x) (Watson, 1922, p. 545) gives 

/c0(x) ~ (2n l i  4-1 ( -  cosx4-s inx  ) 
\ x /  x 

1 
2x~ (cos x + sin x) + . . . ,  (54) 

1 
k0( - x) ~ - (cos x 4- sin x) 

X 

1 
2x e (cos x -  sin x) + . . . ,  (55) 

1 
kl(X) ~ - ( - cos x + sin x) 

X 

1 
+ ~ (cos x + sin x) + . . . ,  (56) 

/ n ~ t  1 +x(OOSX+  -x) 
t 

4- 2-~x2 (cos x - s i n  x)4- ..., (57~ 

ks(x) ~ - ~ ~ +-x ( - cos x + sin x) 

k ~ ( - x ) ~  

3 
+ 2-~x~ (cos x + sin x )+  ..., (58) 

1 
- (cos x 4- sin x) 
X 

3 
4- 2 ~ ( c o s x - s i n x ) + . . . ,  (59) 

1 

~ I ( - - X )  ~ 2XX 3 --X-2 

g2(x)~ - ~ \ F x . ~ /  + ~  

g 2 ( - x ) ~  ~ x2 

(cos x4- sin x) 4- ..., (60) 

(cos x--  sin x) + ..., (61) 

(cos x 4- sin x) 4-.. . ,  (62) 

(cos x--  sin x) 4- .... (63) 
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The sinusoidM oscillations about  the leading te rm are 
not  shown by  Warren 's  function/V(a). The two or three 
terms wri t ten down above give the value of the functions 
correct within 0.01 for x greater than  about  four. 

Series valid for small x are more conveniently ob- 
ia ined by  expanding cos ~ ~ sin ~ in (34) and integrating 
te rm by term. The first few terms for the functions 
required when a(~) is a quadrat ic  are 

k 2 1 2  1 2 a 1 2  0(~)=2+gx-~., -~. , .~ +~., . ~ x  ~" . x ~ + . . . ,  (64) 

2 2  1 2  1 2  a 1 2  
~dx)=g+~x-~. - ~ ' ~  +T., Yi . ~ x  ~" . x ~ + . . . ,  (65) 

2 2 1 2 1 2 x 8  1 2 
k~(x)=75+~x-~..~xg-3~.l- ~ +~...-~x4+..., (66) 

f l  1 1 1 2 1 

1 1 xa } 
+ ~9-5i + ' " '  (67) 

! 

4 ( 1 1 1 1 ~ 1 1 x~ 
9~(x)------ tS---g+g-----7x-~-----9 ~ -3U9.1---i 

1 1 x~ + } 
4! 11.1-----3 "'" ' 

(68) 
g 

where the signs look after themselves; terms with x to 
an odd power change sign with x, and terms with x to 
an even power remain unchanged. The law of formation 
of fur ther  terms is obvious, but  convergence is not  
rapid for x greater t han  uni ty .  In  the general case 
(34) becomes 

1 1 ~ . . } d ~  K(x)--x-' f oa(~) ~-~(l ® ~ - ~ S i .  ~ + . 

n=on! a((;)('n-~'d(;' (69) 

Where the signs s~ run + + - - + + - - . . .  for x 
positive, a=d + -  - + + - - + . . .  for x negative. For  
circular layers (and probably  for other layers bounded 
by  curved lines) a series with integrals of a different 
type  is more convenient. The integral in (32) is 

f~A t-½{cos 27ro-t + sin 2~ro-t} dt (t) 

1 1 "1 dt, = f ~ A(t) t-'{t +2zro't-~ (2~ro't)~-~. (2~ro't)a + .. 
(70) 

and thus depends on integrals of the form 
~ r  

• , JoA(t) t'~-~dt. (71) 

In  Fig. 2 the layer and its ' ghos t '  shifted a distance t 
parallel to S o are represented. I f  T is the  width of the  
layer measured through the point  x, y, the  area A(t), 
shaded in the figure, is (compare Wilson, 1949, pp. 37-41) 

A(tl= f (T-t)dy, (72) 

so tha t  

= (n + ½) (n + ~) T'~+~ @'  (73) 

which becomes, since T - - f d x ,  

ff (n+½)(n+~/  T~÷~ gA, (74) 

where the integrat ion is over the area of the layer.  The 
function K(x) is therefore given by  

f f  - rn+~dA. (75) .K(x)--n=0 (n + ~ ( - ~  ~-)n!" p2T'~+t 

x 01 $, - 

F i g . . 2 .  L a y e r  a n d  i t s  ' g h o s t '  d i s p l a c e d  
a d i s t a n c e  t p a r a l l e l  t o  S 0. 

For a circle of radius R, Y = 2(R ~ -  y2)½, r = 2R, p = Rn½, 

5 ff  2 . 2  ~+~ (R(R2_yZ)½, + dy ' p~ +~ T'~+~ dA =Tr_R2(2R),~+½ ] o 
which becomes, on put t ing  y = 1~ s ine ,  

4 cos'~+~" ¢ d ¢  = z n -  r (½n+  9), (76) 
97 4 

so t ha t  
r ( ½ n + ¼ )  K(x)=2n-~ E s,~ : . x n (77) 

n = 0  (n+½)(n+-~)nlF(½n+~) 
4 ~r (~)  

= 2n-~{1!3 ~r((~) + 3.5 ~r(¼) x 

4 ~r(~-) 4 9 5~1'5~ 
.r(~) x~ ~" ~ - '~ '  x~ 5 . 7 . 2 ! 9 . ~  7 9 .3I~i-  _7---~Z_7~ 

" " 4 • 4 ~ x 4 /  

4 ¥.~r(~) } 
" ~ 9 1 1 . 4 ! ~ . ~  5 5 x a + " "  , (78) . . ~r (~)  

where F(~) = 0.9064.. . ,  F(~) = 0.9190.. . ,  and the signs 
look after themselves. The terms are those of gl(x) 
(equation (68)) multiplied by  a factor t ha t  has the value 
0.91 . . :  for the first te rm and gradual ly decreases. 

6. Particular layer shapes 

The shapes to which the discussion in the previous 
section is directly applicable are 

(i) triangle (any orientation), 
(ii) parallelogram (any orientation), 

(iii) regular hexagon (' side-on' only), and 
(iv) circle (any orientation). 

These will be considered in turn.  
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(i) Triangle 

Let the sides of the triangle ABC be a, b, c, and its 
angles a, /?, 'y. Let the angle between A B  and So, 
measured in the same sense as a, be ~.  The sides of the 
triangle common to the layer and its ghost shifted a 
distance t parallel to S o are reduced by the factor 
(1 ~t/T), where T has the following values, depending 
on the angle ~:  

 =csinp/sin(p+ ) l 
for O~<~k~<a or r r ~ r r + a , )  (79) 

r = b sin a/sin ~ } (80) 
for a < ~ n - f l  or n+a<~<~2rr-fl ,  

r=csina/sin ( p - a )  
(81) 

for ~--/?~<tk'~<rr or 21r--/?~<~2~r.  

The area of the triangle is reduced by the square of 
this factor: A(t)=p~(1-t/~') ~, (82) 

a(g)=(1-g/x)2=l-2g/x+g2/x+=i (83) 

so tha t  y (equation (36)) is unity, and the line profile is 

K(x) =g~(x) + g~(x), (84) 

where x = 2 ~ T ,  and v is given by (79)-(81). The trigo- 
nometric terms in the asymptotic expansion of K(x) 
cancel in this case, at  any rate as far as x -2. 

(ii) Parallelogram 
Let the side A B  of the parallelogram ABCD be c, 

and the side A C be b, and the included angle be a. Let 
the angle between S o and AB, measured in the same 
sense as a, be ~k. The sides of the parallelogram common 
t o  the layer and its ghost are c - t l s in (a -~x )  l/sina 
and b - t  [ sin ~k [/sina, so tha t  

A(t)=p~{1-t  l sin ( a - ~ )  '} { 1 - t  ' sin ~f bsina " (85) 

The value of r is the smaller of csina/l sin (~ -  ~) I and 
b sina/lsin~k], and the value of ~1 is the ratio 
c[ sin ~ I/b I sin ( a -  ~k)] ff this is Iess than unity, or its 
reciprocal if the ratio is greater than unity. The line 
profile is K(x) = g~(x) + yg~(x). (86) 

For a square ~/is [ tan P l or [ cot ~k[, whichever is less 
than unity. 

(iii) Hexagon 'side-on' 

The area common to a regular hexagon and its ghost 
shifted a distance t perpendicular to one side is 

, t _ t 

where a is the length of one side, so tha t  

and a(~) = (1 -~/3x) (1 -g/x), (88) 

y=l/3.  (89) 

The line .profile is therefore 

K(x) =g~ (x) + ½g~(x). (90) 

(iv) Circle 
Series valid for small x have already been given. 

They are not simply related to the functions gl and g~. 
For comparison it is instructive to plot a quant i ty  

proportional to I(~) against tr for a few typical shapes. 
This is achieved by plotting v½K(x) with the x scale 
compressed in the ratio p/7 for the various shapes. 
Fig. 3 shows I(¢) plotted in this way for a square 'side- 
on'  and 'corner-on' with Warren's  function also for 

I 

yy~rr~Js 
, Square, side on 

Square, co rne r  on  

j 

- 7  - 6  - 5  - 4  -3  - 2  -1 

0"3 

Fig. 3. Line profiles for 

4 5 6 
o" 

@2 

0 
0 

random square layers. 

comparison. I t  will be seen tha t  for small o Warren's  
function is a little too big, and this is confirmed by the 
other regular shapes so far discussed. All show the same 
general trend with ~, with variations of the same order 
of magnitude as the difference between the two orienta- 
tions of the square. The differences are hardly large 
enough to be easy to distinguish experimentally. 

The author is grateful to Dr G. W. Brindley, Prof. 
G. H. Livens, and Dr A. R. Stokes for helpful criticism 
at various stages in the preparation of this paper. I t  
forms part  of an investigation of imperfect structures 
for which an apparatus grant has been received from 
the Royal  Society. 
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